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There is strong evidence of shared acoustic profiles common to the expression of emotions in music
and speech, yet relatively limited understanding of the specific psychoacoustic features involved.
This study combined a controlled experiment and computational modelling to investigate the
perceptual codes associated with the expression of emotion in the acoustic domain. The empirical
stage of the study provided continuous human ratings of emotions perceived in excerpts of film
music and natural speech samples. The computational stage created a computer model that retrieves
the relevant information from the acoustic stimuli and makes predictions about the emotional
expressiveness of speech and music close to the responses of human subjects. We show that a
significant part of the listeners’ second-by-second reported emotions to music and speech prosody
can be predicted from a set of seven psychoacoustic features: loudness, tempo/speech rate, melody/
prosody contour, spectral centroid, spectral flux, sharpness, and roughness. The implications of these
results are discussed in the context of cross-modal similarities in the communication of emotion in
the acoustic domain.
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EMOTIONAL COMMUNICATION IN
SPEECH PROSODY AND MUSIC

In the acoustic domain, two types of stimuli are
commonly regarded as especially effective means
of conveying emotional meaning in everyday
contexts: speech prosody (Scherer, 1986) and
music (Gabrielsson & Juslin, 2003). As such
they offer an opportunity to compare the means

by which emotion is communicated through the
auditory domain.

Speech prosody is the pattern of acoustic
changes within spoken utterances that commu-
nicate meaning independently of verbal compre-
hension. Prosodic forms are a fundamental means
by which speakers convey, and listeners under-
stand, speaker emotions and intentions (Frick,
1985; Juslin & Laukka, 2003). The acoustic
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changes occur as modulations of tempo and
continuity, accentuation, pitch and range, timbre
and dynamics of speech and vocalisations. Simi-
larly to facial expressions (Ekman, 1992), certain
aspects of emotional expression in speech prosody
appear to be universal (e.g., Scherer, Banse, &
Wallbott, 2001) and convincing evidence points
to similar prosodic codes used across cultures to
convey similar emotions (e.g., Thompson &
Balkwill, 2006). This is apparent, for instance,
in our capacity to decode emotional meaning even
in unfamiliar languages.

Music, like speech, has the capacity to com-
municate emotions to listeners through the orga-
nisation of acoustic signals (see, for instance,
Juslin & Sloboda, 2010). Although researchers
differ in their conceptions of musical emotions,
they agree when it comes to asserting music’s
capacity for emotional expression. As in the case
of speech prosody, listeners construe emotional
meaning by attending to structural aspects of
the acoustic signal and there is evidence of
specific acoustic cues and patterns communicating
similar emotions to listeners (see Gabrielsson &
Lindström, 2010). Although frequently regarded
as subjective and culturally grounded, there is
convincing evidence that music can express
emotions that are recognised universally (e.g.,
Balkwill, Thompson, & Matsunaga, 2004;
Fritz et al., 2009), a phenomenon that is asso-
ciated with acoustic profiles that transcend cul-
tural boundaries.

Only recently have researchers begun to com-
pare directly acoustic cues to emotion in music
and vocal prosody (Ilie & Thompson, 2006, 2011;
Juslin & Laukka, 2003; Patel, Peretz, Tramo, &
Labreque, 1998). These studies provide evidence
of the existence of acoustic profiles common to
the expression of emotion in both speech and
music, with particular acoustic codes consistently
associated with particular emotions. In a review of
104 studies of vocal expression and 41 studies of
music performance, Juslin and Laukka (2003)
highlighted similarities in the emotion-specific
patterns of acoustic cues used to express discrete
emotions, and concluded that this provides evi-
dence for similar codes and shared neural

resources. Subsequent studies directly comparing
perception of emotion in music and speech
prosody provided further evidence supporting
these ideas and highlighted the complexity of
the relationships. Using a three-dimensional
model of emotions to study three particular
acoustic cues, Ilie and Thompson (2006) found a
variety of effects and interactions: intensity was
found to influence both prosody and music in the
same way (greater intensity was associated with
higher ratings of valence, tension and energy), rate
had varying effects on both domains (faster music
and speech was associated with higher energy, but
whereas fast speech was judged as less pleasant
than slow speech, fast music was judged as more
tense than slow music), and pitch height influ-
enced the two domains in opposite directions
(high pitched speech and low pitched music were
both attributed higher ratings of valence). Evi-
dence that prosody and music share processing
resources at an intermediate level in the auditory
pathway comes from a study of perceptual dis-
crimination in music and speech by two amusic
subjects, which showed that performance was
similar across domains although the participants
had different perceptual deficits (Patel et al.,
1998).

This previous research into the induction of
emotion by music and speech prosody provides a
strong basis on which to purport the existence of a
general mechanism for the expression and recog-
nition of emotions in the acoustic domain and
indicates the importance of shared acoustic fea-
tures. However, we now need to understand the
exact character of this general mechanism, and in
our study we focused on three main aspects.

First, given that music processing comprises a
number of different systems, rather than a single
‘‘module’’, it may be that some of these are specific
to music, while others apply to all types of
auditory information (Ilie & Thompson, 2011).
Therefore, direct comparison of the affective
influence of music and speech prosody is necessary
to determine the extent of overlap.

Second, it remains to be seen the extent to
which particular acoustic features relate to a fuller
range of emotional states, and to continuous as
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opposed to discrete emotion judgements. Virtually
all studies have focused on the communication
of full-blown, discrete emotional states such as
happiness, sadness, fear or anger, and very few
have considered the wide range of strong and
nuanced emotional states expressed by speech and
music in daily life*one exception being research
using the Geneva Emotional Music Scales
(Zentner, Grandjean, & Scherer, 2008).

Third, derivation of acoustic profiles from the
study of discrete emotional states leads to com-
parative descriptions of different emotions and the
analysis of acoustic factors in terms of extreme
levels (e.g., high/low, slow/fast, as seen in Juslin &
Laukka, 2003, p. 802, Table 1). The outcome is a
set of qualitative classifiers particular to certain
emotions, which tend to be generalised to other
states by assuming that intermediate states can be
extrapolated from these extremes and that the
various acoustic parameters do not interact mean-
ingfully. Although those procedures can be useful
in certain contexts, such as the recognition of basic
emotions, they can result in misleading and
contradictory results if applied within a broader
context, impairing identification of the prosodic
and musical forms associated with the expression
of emotion.

Motivated by these gaps in current under-
standing, and by recent findings in the music
domain (Coutinho & Cangelosi, 2009, 2011),
this research project adopted a transdisciplinary
method that combined empirical experiments and
computational modelling to investigate the

psychoacoustic codes associated with the expres-
sion of emotion in the auditory domain.

Our theoretical framework conceptualised the
communication of emotion via music as part of
the broader study of human and animal vocal and
emotional communication, in which the primary
function of acoustic communication is to exploit
listeners’ sensitivity to acoustic information to
act upon the hearer and influence them so-
cially, as evidenced in studies of vocal acoustics
(Bachorowsky & Owren, 2003), infant-directed
speech (Schachner & Hannon, 2011), laughter
(Bachorowsky & Owren, 2001), and primate
studies (Owren & Rendall, 1997). Our focus on
stimulus properties is consistent with this ap-
proach. Our premise was that musical structure
elicits in the listener responses in neurological
mechanisms, and bodily changes associated with
motivation, cognition and emotion, and that these
use the same mechanisms as are recruited by other
emotionally significant external stimuli. Evidence
supporting this framework comes from the large
number of empirical studies that reveal systematic
relationships between musical structures and
emotional responses (Gabrielsson & Lindström,
2010), and neuroscientific studies suggesting that
music can elicit emotions in listeners without the
need for cognitive attributions (e.g., Peretz, 2001)
or mediation (e.g., Blood & Zatorre, 2001).
Specifically, we argued that music evokes emotion
by creating dynamic temporal patterns to which
our evolved socioemotional brain is particularly
sensitive.

Table 1. Pieces of music used in the empirical study

ID Piece Duration Expected quadrant

1 (Bram Stoker’s) Dracula, Vampire Hunters 2:00 Q2

2 Bride of Frankenstein, Main Title 1:24 Q1 Q2 Q3 Q4

3 Guns for San Sebastian 1:54 Q1 Q3

4 Hellraiser, Main Title 1:50 Q2 Q3

5 Krull, Love Theme 2:10 Q1 Q4

6 Minority Report, Main Theme 1:48 Q1 Q4

7 The Quiet Earth, Finale 1:48 Q2 Q3

8 The Searchers, Suite 1:29 Q1 Q2 Q4

Notes: The extracts are numbered consecutively, so as to serve as aliases for reference in this article. For each extract we give the piece title, its

duration, and the 2DES quadrant corresponding to the emotional response we expect the extract to elicit in listeners based on pre-testing.
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In previous work (Coutinho & Cangelosi,
2009, 2011), Coutinho proposed that spatiotem-
poral low-level acoustic patterns convey funda-
mental information about listeners’ perception of
emotion in music. In order to test that hypothesis,
Coutinho and Cangelosi devised a computational
method sensitive to the temporal structure of
sound that could predict a significant part of
listeners’ affective response from a set of six
psychoacoustic features (basic variables of human
audition that are perceived similarly across in-
dividuals and shared across acoustic modalities):
loudness, pitch level, pitch variation (contour),
tempo, texture and sharpness. The strength of this
approach, compared to a behavioural study in
which the influence of various psychoacoustic
features are assessed by means of multiple regres-
sion, is that it provides a systematic means of
extracting complex relationships from continuous
data as is found in ecologically valid materials.
The computational model can handle relation-
ships among simultaneous features (thus consid-
ering interactions between various psychoacoustic
dimensions; see Webster & Weir, 2005), and can
incorporate memory of the past states of features,
thus reflecting the dynamic and temporal char-
acter of emotional experience and associated
auditory attributes. In this article we extend that
work beyond the musical domain to speech,
allowing investigation of a general mechanism
for the expression and recognition of emotions in
the acoustic domain.

Overview of the present study

Our research combined a behavioural study and
computational model in order to determine the
extent to which low level acoustic features convey
emotion in music and speech.

In the behavioural phase, participants listened
to excerpts of music and speech and rated the
emotions perceived. Rather than manipulate a
small number of acoustic attributes we elicited
emotion judgements on unaltered stimuli to allow
a fuller investigation of a range of possible features
and states. This is the first time, to our knowl-
edge, that any direct comparison of emotion

communicated by music and speech prosody has
been investigated using continuous evaluations of
emotion, and therefore capturing the dynamic,
temporal character of emotional experience.

Emotional responses to the stimuli were re-
corded along two axes: valence and arousal. This
two-dimensional model of affective space is
adopted from Russell’s (1980) circumplex model
of emotion, which represents specific emotions as
points within a two dimensional space, located in
terms of their relative valence (ranging from
positive to negative affect) and arousal (ranging
from high to low neurophysiological alertness).
The model has been shown to account for a large
proportion of variance in the emotional labelling
of linguistic (Russell, 1980), pictorial (Bradley &
Lang, 1994), and musical stimuli (e.g., Schubert,
1999b). Furthermore, there is evidence that
arousal and valence are subserved by distinct
neural systems during the experience of induced
emotions (Colibazzi et al., 2010). Notably, di-
mensional models are less able than discrete
models to capture mixed emotions of simulta-
neously positive and negative valence (Larsen &
McGraw, 2011). Nonetheless, the two are largely
compatible (Eerola & Vuoskoski, 2011). A two-
dimensional model was adopted in this study
because, as explained above, it facilitates repre-
sentation of a wide range of mild and full-blown
emotions, allows direct comparison of music and
speech emotional ratings, and because it is reliable
and economical and can be implemented for the
collection, analysis and modelling of continuous
data.

This study focused on emotion portrayed by
music and speech stimuli, as distinct from the
emotion felt by the listeners. This is an important
distinction since emotion recognised and emotion
felt are not necessarily identical (Gabrielsson,
2002). Indeed, there is preliminary evidence that
perception of emotion in music and speech differs
from the emotion induced, although with no clear
pattern of responses (Ilie & Thompson, 2011).

In the second part of our study a computational
model was used to predict the behavioural data.
Excerpts were represented in terms of a number
of acoustic features deemed to be relevant by
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previous studies (see Juslin & Laukka, 2003,
p. 802, Table 11). The computational model
then predicted listeners’ responses to excerpts
based on the most successful combination of these
features. This revealed which acoustic features in
music and/or speech was best able to model
listeners’ emotion judgements. As discussed
above, the advantage of this approach is that it
can capture a fuller spectrum of emotional states
as they change over the time course of any music
and speech.

This study therefore had two main aims. First,
to determine the shared acoustic forms commu-
nicating emotions across music and speech. Sec-
ond, to make detailed predictions of the emotional
expression of natural speech and music. The
purpose of the experiment was to collect contin-
uous ratings of emotions perceived in music and
speech stimuli. The goal of the computational
study was to create a model capable of predicting
participants’ subjective feelings of emotion (the
data collected in the empirical experiment), using
low-level psychoacoustic features. Using these
means we determined the extent to which the
dynamics of emotional responses to music and
speech are the result of the perception of emo-
tional meaning via shared psychoacoustic patterns.

METHOD

Empirical phase

The experiment collected continuous ratings of
emotions perceived in film music and natural
speech. A continuous response method was used
to obtain fine-grained temporal variations in
reported emotional experience. This allows parti-
cipants to report changes in their emotional state
at any moment, instead of doing so only at the end
of the piece, and has previously been used
successfully in studies of emotional responses to
music (e.g., Grewe, Nagel, Kopiez, & Altenmül-
ler, 2007). The output from this self-report
method is a time series depicting the dynamics
of participants’ ratings of emotion at every mo-
ment in the music. This continuous method of
data collection is central to our study, which

hypothesises that the temporal structure of acous-
tic features communicates emotional information.

Participants
Sixty volunteers participated in the experiment.
Two listeners were excluded from the analysis due
to measurement errors, and a further six partici-
pants, whose native language was not English,
were removed. The purpose of the latter selection
was to minimise variability in responses to the
language samples. The final dataset used for the
analysis consisted of 52 participants (Mage �31
years, SD�13, range �18�61 years; 26 females).
Participants had a range of musical education and
experience (median �5�10 years of formal music
training) 15 participants had none or less than one
year; 17 participants had ten years or more of
music education or practice. Participants also
reported enjoying film music (the mean rating
was 3.9 on a 5-point Likert scale, where 1
corresponds to ‘‘I hate film music’’ and 5 corre-
sponds to ‘‘I love film music’’), and all but one
reported being exposed to film music at least
‘‘occasionally’’.

Materials
The stimulus materials consisted of eight extracts
of music, and nine samples of speech. In order to
achieve comparable ecological validity, the music
stimuli were excerpted from late twentieth-
century Hollywood film scores and the speech
stimuli were excerpted from commercially avail-
able and online film, dramatic performances,
poetry recitations and interviews; these genres of
music and speech are intended to affect listeners
emotionally and are widely experienced by the
general public. The music and speech excerpts
were selected from a larger set of twenty speech
and twenty music pieces, displaying a wide
emotional range, and in the case of the music
stimuli, a variety of instrumentation. Subselection
was made from this set via pre-testing with fifteen
student and staff participants from the University
of Sheffield using a paper-based self-report two-
dimensional affect space. Selection of the final
set of stimuli was determined by three criteria:
highest consistency of emotion rating among
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respondents; widest coverage of the two-
dimensional emotional space (2DES); a diversity
of psychoacoustic dimensions represented by the
set as a whole (e.g., instrumentation, loudness,
tempo). The stimuli were up to two and half
minutes in length, in order to allow measurement
of dynamic changes in affective experience, and to
keep the total experiment less than thirty minutes
in duration. A dimensional reduction from ratings
performed on a large set of stimuli is often ideal
in stimuli selection (Eerola & Vuoskoski, 2011)
but would not have been able to discriminate
stimuli according to the criteria needed for this
experiment.

The music used is shown in Table 1. The
emotion communicated by each piece as deter-
mined by pre-testing is indicated by the labels
Q1 to Q4, which represent the four main areas
resulting from a division of the 2DES arousal/
valence diagram into quadrants: Quadrant 1
(Q1)*positive arousal and positive valence;
Quadrant 2 (Q2)*positive arousal and negative
valence; Quadrant 3 (Q3)*negative arousal and
negative valence; and Quadrant 4 (Q4)*negative
arousal and positive valence.

The speech samples were all chosen from a
single language not understood by participants.
This was necessary in order to avoid any con-
founds due to the necessarily different semantic
content of ecological speech samples. German was

selected due to evidence in previous research that

native English speakers not conversant in German

are able to decode the emotional nuances of

German prosody (Scherer et al., 2001; Thompson

& Balkwill, 2006). The speech samples used are

shown in Table 2. As above, the emotions

communicated by each excerpt, as determined by

the pre-test, is indicated by the labels Q1 to Q4.
Participants also completed a questionnaire

collecting information on demographics. This

included 5-point Likert scales for musical train-

ing, musical exposure, and musical enjoyment.

Procedure
Each participant sat comfortably in a chair inside

a quiet room. The goal of the experiment was

explained through written instructions that de-

scribed the quantification of emotion and the self-

report framework to be used during the listening

task. Participants reported their emotional state by

using software constructed by the first author,

which consists of a computer representation of a

two-dimensional emotional space (2DES). Phy-

siological data (blood volume pulse, electrocardio-

graphy, skin conductance, and respiration rate)

was collected using the ProComp5 Infiniti en-

coder: participants had sensors attached to their

left-hand (if right handed) and to the right hand

(if left handed), and wore a strap around the chest.

Table 2. Speech samples used in the experiment

ID Sample Duration Expected quadrant

1 Sketch: ‘‘The doctrine of the four temperaments: Mr Sanguinix’’ 0:45 Q1

2 Interview: Charlotte Roche ‘‘Woman secrets’’ 2:36 Q1 Q4

3 Speech: Howard Beale (actor Peter Finch) delivering his ‘‘mad

as hell’’ speech from the film Network

1:39 Q2

4 Sketch: ‘‘The doctrine of the four temperaments: Mr Cholerix’’ 0:58 Q2

5 Interview: Jenny Spritzer ‘‘Ich Bin Ein Wunder/I Am A Miracle’’ 1:16 Q2 Q3

6 Poetry: ‘‘Orphische Bucht’’ (Orphic Bay). Poem by Erich Arendt

(recited by an unknown female)

1:40 Q3 Q4

7 Speech: Albert Jerska (actor Volkmar Kleinert) speaking to Georg Dreyman

(actor Sebastian Koch) in the film The Lives of Others/Das Leben Der Anderen

1:03 Q3

8 Interview: Njeri Weth ‘‘A voice that touches’’ 1:28 Q1 Q4

9 Interview: Edda Raspé ‘‘Three things that make me happy’’ 1:46 Q3 Q4

Notes: The excerpts are numbered consecutively, so as to serve as aliases for reference in this article. For each excerpt we indicate the source,

its duration, and the 2DES quadrant corresponding to the emotional response we expect it to elicit in listeners, based on pre-testing.
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The physiological data is not reported here since it
pertains to a related but separate study.

Participants were given the opportunity to
practise with the self-report framework using
ten pictures taken from the International Affec-
tive Picture System manual (Lang, Bradley, &
Cuthbert, 2005). The selected pictures repre-
sented emotions covering all four quadrants of
the 2DES (two per quadrant), and the neutral
affective state (centre of the axes). The pictures
were shown in a non-randomised order, in order
to avoid starting or finishing the picture slideshow
with a scene of violence. Each picture was shown
for 30 seconds, with a 10-second delay between
presentations. The only aim of this exercise was to
familiarise participants with the use of the self-
report framework.

After the practice period, participants were
asked about their understanding of the experi-
ment, and whether they felt comfortable in
reporting the intended affective states with the
software provided. Participants were then re-
minded to rate the emotions thought to be
expressed by the music and speech stimuli, and
not the ones felt. When the participant was ready,
the main experiment started and the first stimulus
was played. The stimuli were presented in a
randomised order, with a break of 75 seconds
between each excerpt (unless the participant
needed more time). Each experimental session
lasted for about 60 minutes, including debrief,
preparation and training periods.

Data processing
The arousal and valence reported by each parti-
cipant was recorded from the mouse movements.
These values were normalised to a continuous
scale ranging from �1 to 1, with 0 as neutral.
The central tendency of the individual values of
arousal and valence was estimated by calculating
the arithmetic mean across all participants, on a
second-by-second basis, for each sound stimulus.

Computational phase

In this part of the study, we employed a
computational framework to model the emotion

reported by the group of participants that listened
to the music and speech stimuli in the empirical
study. The first aim was to create a model that
was able to learn (from a subset of stimuli) how
the dynamics of arousal and valence relate to the
psychoacoustic structure of the stimuli heard. The
second was to use that ‘‘knowledge’’ to predict as
accurately as possible the emotional responses to
novel stimuli. The third was to compare music
and speech models and to establish whether
similar psychoacoustic cues are involved in the
communication of emotion for both media.

Our first hypothesis was that low-level psy-
choacoustic features strongly relate to emotion
reported by listeners. Our past research revealed
that a large percentage of the emotions perceived
in music could be consistently inferred from low-
level psychoacoustic dimensions (loudness, pitch
level and contour, tempo, and timbre; Coutinho
& Cangelosi, 2009, 2011). Consequently, we
wanted to know which features are most relevant
for the communication of emotions in music and
in speech, and to what extent emotionally con-
gruent qualities of these features are reliable
predictors of the emotions perceived by human
listeners. Our second hypothesis was that a similar
set of psychoacoustic cues would be involved in
the expression of emotion in both media, as per
the previous research discussed above.

Computational framework: Elman Neural
Network
Due to their adaptability to deal with patterns
distributed across space (relationships among
simultaneous features) and time (memory of the
past states of the features), Recurrent Neural
Networks (RNNs) were used in previous work
by the first author to model emotional responses
to music (Coutinho & Cangelosi, 2009, 2011).
Specifically, this previous work used a type of
RNN called an Elman Neural Network (ENN;
Elman, 1990). This model consists of the tradi-
tional feed-forward multi-layered perceptron
(Rumelhart, Hinton, & Williams, 1986) with
added recurrent connections on the hidden layer
that endows the network with a dynamic memory.
While the basic feed-forward network can be
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thought of as a function that maps from input to
output vectors, parameterised by the connection
weights, and capable of instantiating many dif-
ferent functions, the ENN can map from the
history of previous inputs to predict future states
in the output. The key point is that the recurrent
connections allow the sequence of internal states
of an ENN to hold not only information about
the prior event but also relevant aspects of the
representation that were constructed in predicting
the prior event from its predecessor. If the process
being learned requires that the current output
depends somehow on prior inputs, then the
network will need to ‘‘learn’’ to develop internal
representations that are also sensitive to the
temporal structure of the inputs. An overview of
artificial neural networks theory, a detailed de-
scription of the model, as well as its application to
the prediction of emotional responses to music
can be found in Coutinho and Cangelosi (2010).

In the context of the present study, we used the
ENN as a non-linear regression model. The
dependent variables were the self-reported emo-
tion dimensions (psychological arousal and va-
lence) that corresponded to the subjective feelings
of emotions perceived by listeners while listening
to each stimulus. The independent variables were
the sensory and perceptual quantities (psychoa-
coustic features) extracted from the audio signals
(music and speech stimuli), which described the
low-level psychoacoustic structure of the auditory
object.

Procedure

Model architecture
The ENN architecture consists of a three-layered
simple recurrent neural network comprising: (1)
an ‘‘internal state’’ or ‘‘hidden’’ layer; (2) a
‘‘memory’’ or ‘‘context’’ layer; and (3) an output
layer (which yields the arousal and valence out-
puts). Additionally the network has an extra layer
holding the input units, which receives and

processes the functional data of the psychoacoustic
features (see Figure 1).1

The size of the input layer depends on the
number of features used in each modelling
experiment. We tested different groups of inputs,
therefore the size of this layer was variable. The
size of the hidden and memory layers was
identical (the memory layer holds a copy of the
hidden layer activations at the previous time step)
and it was set to ten, a value optimised in a
preliminary set of simulations. The output layer
size was two: one unit for arousal and another for
valence.

Inputs
Our main hypothesis for this experiment was that
low level music structural features show causal
relationships with listeners’ reports of emotion.
To extract such information from the music and
speech signals we quantified different psychoa-
coustic dimensions describing each auditory ob-
ject. We focused on five main classes of features:
loudness, duration (tempo/speech rate), pitch
(melody/prosody contour and pitch variation),
timbre (‘‘brightness’’ and ‘‘sharpness’’), and rough-
ness (including spectral dissonance). These basic
variables of human audition show consistent
relationships with emotional arousal and valence
(Gabrielsson & Lindström, 2010; see also
Coutinho & Cangelosi, 2009, 2011). A summary
of the features selected for this experiment is given
in Table 3. The following paragraphs provide a
brief description of each feature and algorithms
for their estimation.

Loudness. Loudness (L) is the perceptual corre-
late of sound intensity (or physical strength),
which we quantified using Chalupper and Fastl’s
(2002) dynamic loudness model (measured in
sones).

Duration. The measures of duration consist of
the rate of speech (SR) and musical tempo (T).
The former was estimated using De Jong and

1 A description of the model can be found in Coutinho (2010). Please refer to Elman (1990) for a detailed functional and

mathematical description of the ENN.
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Wempe’s (2009) algorithm, which detects syllable
nuclei and quantifies speech rate as the number of
syllables per minute (SPM). The latter was
estimated from the inter-beat intervals obtained
for each piece using BeatRoot (Dixon, 2006), and
quantified as the number of beats per minute
(BPM).

Pitch. The perceived pitch level and pitch con-
tour were calculated separately for music and
speech. The prosodic contour (pC) was calculated
using Prosogram (Mertens, 2004), a prosody
transcription tool that estimates the intonation
contour (the perceptual correlate of the funda-
mental frequency, F0), as human listeners perceive

it. The melodic contour (mC) was estimated using
Dittmar, Dressler, and Rosenbauer’s (2007) tool-
box for automatic transcription of polyphonic
music. The contour curve yielded by this algo-
rithm estimates a salient stream of audible pitches
from the full harmonic structure of the polyphonic
signal. In addition to these measures we also
calculated the spectral flux (SF) for all stimuli in
order to quantify how much the power spectrum
of the signal changes in time.2

Timbre. Timbre is a multi-dimensional attribute
and has been associated with many different
psychoacoustic attributes. Two of the most
commonly used features are ‘‘brightness’’ and

O1O0

HNH0
Hn CNC0 Cn

INPUT UNITS

CONTEXT
UNITS

HIDDEN
UNITS

OUTPUT UNITS

Psychoacoustic encoding

Music Speech

Psychoacoustic features

Arousal Valence

Figure 1. Model architecture and information flow showing the three-layered recurrent neural network, which takes encoded psychoacoustic

features as input and outputs predicted valence and arousal.

2 Calculated as the Euclidean distance between the two normalised spectra in consecutive spectral frames.
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‘‘sharpness’’. We quantify timbre using: (1) the
power spectrum centroid (SC), which is calculated
by the weighted mean of the frequencies present
in the signal (weights being the Fourier transform
magnitudes for each frequency band), a quantity
strongly associated with the impression of sound
‘‘brightness’’); and (2) two sharpness measures
(Szf, Sa): one proposed by Zwicker and Fastl
(1999) and another by Aures (1985); Aures’
sharpness formula is a revision of Zwicker and
Fastl’s, which considers the positive influence
that loudness has on sharpness (both approximate
the subjective experience of sharpness on a scale
ranging from dull to sharp, and are measured in
acum).

Roughness. The term auditory roughness de-
scribes the perceptual quality of buzz, raspiness
or harshness associated with narrow harmonic
intervals. In a complex sound (a sound comprising
several partials or pure tone components), any two
or more partials less than a critical distance apart
can lead to the auditory experience of ‘‘beating’’ or
‘‘roughness’’. This effect is associated with the
inability of the basilar membrane to separate the
sounds clearly. Roughness is also a perceptual

correlate of dissonance, a concept that has acoustic
and physiological bases, as well as cognitive and
cultural ones (Vassilakis, 2001). The psychoacous-
tic dimension of dissonance more closely asso-
ciated with roughness is known (among other
terms) as auditory dissonance (Hutchinson &
Knopoff, 1978). We use one measure of psychoa-
coustic roughness (R; Daniel & Weber, 1997) and
two algorithms to measure auditory (spectral)
dissonance (Dhk, Ds; Hutchinson & Knopoff,
1978; Sethares, 2004).

Outputs
The model outputs (the dependent variables) were
the arousal and valence time series averaged across
participants (see empirical experiment section).
The values are solely the result of the network
processing.

Training and test data sets
One of the interesting aspects of learning systems,
such as the ENN, is their ability to generalise
from a subset of the data. This means that if the
ENN can learn a set of dynamic rules from a
sample data set (the ‘‘training set’’) that constitutes
a possible solution to the problem being modelled,
then the model can subsequently be tested to
predict the output data vector to another subset of
unseen stimuli (the ‘‘test set’’). When this is
successful the model solution is likely to be
generalisable beyond the data set.

The model performance with unseen data sets
at each moment of the learning stage is funda-
mental for testing its generalisability. It is neces-
sary to monitor the performance error for both
sets in order to prevent ‘‘over-fitting’’ the model,
which occurs when a model begins to memorise
the training data rather than finding a general
solution to the problem. It is therefore vital to
ascertain that the error value for the test data set is
as low as possible, and that the test data set is large
enough (at least comparable to the size of the
training set) for the generalisation to be robust.

Music and speech stimuli were processed
separately. We divided each set of stimuli (8 music
pieces and 9 speech samples) into two groups
balanced in terms of coverage of the 2DES and

Table 3. Psychoacoustic variables considered in this study

Psychoacoustic

group Feature ID Alias

Loudness Dynamic loudness i1 L

Duration Tempo (only music stimuli) i2m T

Speech rate (only speech

stimuli)

i2s SR

Pitch Melody contour (only music

stimuli)

i3m mC

Prosody contour (only speech

stimuli)

i3s pC

Spectral flux i4 SF

Timbre Sharpness (Zwicker and Fastl) i5 Szf

Sharpness (Aures) i6 Sa

Power spectrum centroid i7 SC

Roughness Psychoacoustical roughness i8 R

Auditory dissonance

(Hutchinson and Knopoff)

i9 Dhk

Auditory dissonance (Sethares) i10 Ds

Notes: The time series obtained were down-sampled from the

original sample rates (which vary from feature to feature) to

1 Hz in order to obtain second-by-second values.
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total duration. This division ensured maximum
coverage of the 2DES by the training set thereby
providing a good sample of the solution space, and
a test set that was long and varied enough to
incisively assess the model reliability. The distribu-
tion of the stimuli among the training and test sets
for both music and speech were as follows (the
numbers indicate the stimuli IDs indicated in
Tables 1 and 2): Training set (Music)�{3, 4,
5, 7} (462 s); Test set (Music)�{1, 2, 6, 8} (401 s);
Training set (Speech)�{1, 3, 6, 7, 8} (376 s); and
Test set (Speech)�{2, 4, 5, 9} (375 s).

RESULTS: BEHAVIOURAL PHASE

We first explore data from the behavioural phase
of the research before proceeding to the computa-
tional stage.

Reliability of the means
The internal consistency of participants’ ratings of
emotions perceived was tested using Cronbach’s
alpha, a measure of the reliability of the mean,
calculated across all participants. The average
reliability across all stimuli was high for both
reported arousal (.95) and valence (.80), although
participant responses were more consistent for the
first. Cronbach’s alpha scores for each individual
piece and speech sample showed very high con-
sistency (all�.80), with the exception of the
arousal score for speech sample 8 (.65) and the
valence scores for speech samples 6 (�.73) and 9
(.15). These findings indicate that the emotion
ratings were sufficiently consistent to be suitable
for further analysis and modelling.

Stimuli
We tested the representativeness of the stimuli as
regards coverage of the 2DES affect space. The
music stimuli elicited responses in the predicted
quadrants of the 2DES (see Table 1). As
intended, responses for individual pieces showed
changes during the time course of the stimuli and
responses across the set of stimuli covered all four
quadrants of the 2DES (see Figure 2A). Ratings

are slightly skewed towards the higher half of the
arousal dimension in the 2DES, which may reflect
the particular stimuli chosen.

Similarly, the speech extracts elicited responses
in the predicted quadrants of the 2DES (see
Table 2). Responses for individual pieces showed
changes during the time course of the stimuli and
responses across the set of extracts covered all four
quadrants of the 2DES (see Figure 2B).

Overall, these results indicate that the stimuli
provided a good foundation from which to model
emotion communicated by music and speech: the
responses showed internal consistency and elicited
emotions in different areas of, and temporally
distributed across, the 2DES affect space.

RESULTS: COMPUTATIONAL
STUDY

Simulations
The term ‘‘simulation’’ refers to the training of an
ENN to output the emotion features for the
training stimuli set as close as possible to the
emotional dimensions reported by human sub-
jects. Each simulation consisted of a set of 40
trials in which the same model was trained using
different initial conditions (randomised weights
for all connections: values distributed between
�0.05 and 0.05, except for the connections from
the hidden to the memory layer, which were set
constant to 1.0). This procedure verified the
consistency of the results across simulations.
Each trial consisted of 120,000 iterations of the
learning algorithm, implemented using a standard
back-propagation technique (Rumelhart et al.,
1986). During training the same learning rate
(0.1) and momentum (0.0) were used for each of
the three connection matrices. Further details
related to the learning algorithm and procedure
used can be found in Coutinho and Cangelosi
(2010).

Having fixed the network parameters and
defined the output vector, the only aspect that
changes from one simulation to the next is the set
of inputs used. By trying different vectors of
features as inputs to the model we tested varied
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Figure 2. Plot showing the second-by-second values of the self-reported emotional arousal and valence averaged across all participants for

each music piece (A) and speech sample (B) against the model predictions. Each pair of values is represented by their corresponding location in

the 2DES.
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configurations of psychoacoustic features and
evaluated the model performance for each. The
quantification of the deviation of the model
outputs from the values observed experimentally
was implemented using the root mean square
error (RMSE), which is a measure of precision.
For each trial the training stop-point was esti-
mated a posteriori by calculating the ideal number
of training iterations so as to minimise the model
output error (i.e., the RMSE) for the test set, thus
avoiding the over-fitting of the training set. After
identifying the iterations leading to the best
model predictions, we then picked the five best
trials (lowest RMSE for the test set) from each
simulation and averaged their outputs. The error
statistics presented in this section correspond to
the deviations between experimental data (aver-
aged across participants) and model outputs
(averaged across the five best trials).

Simulations for music and speech stimuli were
conducted separately since the use of speech
stimuli was a new addition to our modelling
work and because some of the input features
vector may differ from that for music (e.g., tempo
vs. speech rate). In the first battery of simulations,
we started with a set comprising only variables
describing speech and music stimuli in terms of
loudness, tempo/speech rate and melodic/prosodic
contour, and we monitored the extent to which
each addition of the remaining psychoacoustic
cues improved the model performance. Thus, in
each simulation, the input vector consisted of a
basic set of three psychoacoustic groups*
loudness (i1), duration (i2m/i2s), and pitch
(i3m/i3s)*alone, plus each of the remaining
features (i4�i10; adding up to eight initial simula-
tions; see Tables 4 and 5, simulations #1 to #8).
The decision to start with these three features as
the basis for the input vector was due to their
consistent association with the perception of
emotion in music (Coutinho & Cangelosi, 2009,
2011; Gabrielsson & Lindström, 2010) and
prosody (Juslin & Laukka, 2003). In these initial
simulations we monitored how much each single
feature produced an effect on the model perfor-
mance when compared to the model output that
only used the basic set of features ({L T mC} for

music, and {L SR pC} for speech). Performance-
enhancing variables were selected for further
testing.

In consecutive simulations we evaluated several
combinations of the selected input features, until a
final input vector was found: the one that led to
the lowest test set error, with a good balance
between arousal and valence outputs prediction
accuracy. Given that in all simulations only the
composition of the input vector was changed
(training and test sets were the same; and the
network parameters, except the weights, were kept
constant across simulations), the selection of the
final model (the one with lowest error) was
directed towards the identification of the set of
psychoacoustic features that permitted the most
accurate predictions of the emotional responses to
the stimuli used. In what follows we present the
preliminary simulations used to determine the set
of acoustic features that best predicted the ratings
of emotion, followed by a detailed analysis of each
model.

Music preliminary simulations: Input vector
optimisation
The results corresponding to the first battery of
simulations with music stimuli is shown in Table
4 (simulations #1 to #8). To evaluate the
contribution of each new variable added to the
basic set, we compared the error of simulations
#2 to #8 with the error of simulation #1 (L, T,
and mC) to evaluate the contribution that each
new input brought to the model. In particular, we
were interested in identifying those features that
led to an improvement in the model performance
for the test data set, i.e., the generalisation of the
knowledge extracted from the training set to a
new sample of music.

In the table, we have highlighted in bold those
values that are at least equal to the basic model
(sim. #1) error. Those that produced lower errors
are additionally underlined. Concerning the arou-
sal dimension of the training data set, all simula-
tions produced very similar errors (see Table 4).
With respect to the test data set error, little was
learned from the variables tested, which suggested
that the basic input set (L, T, mP) contained the
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essential information that the model could use to
generalise the knowledge extracted (considering
that the improvements to the training set error
didn’t lead to better generalisation). The results
pertaining to valence showed a different picture.
Indeed, the features used in some of the simula-
tions contained additional information with re-
levance for valence predictions.

Having found improvements by adding new
input features to the model, we identified those
that led to the best results. To do so we focused on
those simulations that produced improvements in
the generalisation performance. With this pre-
mise, the features from simulations #2, #3, #5
and #6 were the most obvious candidates, be-
cause, as mentioned before, they led to better
generalisation of valence ratings. In the remaining
simulations (#4, #7, and #8), although there were
some improvements to the training error, they did
not lead to a generalisation performance, hence

can be interpreted as an over-fitting of the
training data and, consequently, the feature tested
was not used in further simulations.

Having selected four input features for further
testing*SC, SF, Sa, and Dhk*we proceeded by
creating a new battery of simulations to evaluate a
new set of input vectors. They consisted of the
basic set (L, T, and mC), plus every combination
of two variables selected in the first set of
simulations (SC, SF, Sa, Dhk). This sums to a
total of six new simulations. The input vectors and
results for the new simulations are shown in Table
4 (simulations #9 to #14). To identify the best
simulations we compared the error values in each
new simulation with the corresponding minimum
errors in the simulations, taking each variable
separately. The minimum errors are those values
highlighted in bold in Table 4.3

The error figures show that several of the new
simulations were able to bring together the

Table 4. Error statistics for the simulations: Music

RMSE

Arousal Valence

Simulation Inputs Training Test Training Test

1 L, T, mC .05 .08 .04 .10

2 L, T, mC�SC .05 .09 .05 .09

3 L, T, mC�SF .07 .08 .03 .09
4 L, T, mC�Szf .04 .08 .08 .10

5 L, T, mC�Sa .07 .09 .06 .09

6 L, T, mC�Dhk .06 .09 .08 .09
7 L, T, mC�Ds .05 .09 .03 .10

8 L, T, mC�R .07 .09 .04 .10

9 L, T, mC�SC, SF .05 .08 .06 .09

10 L, T, mC�SC, Sa .05 .09 .06 .09
11 L, T, mC�SC, Dhk .06 .09 .06 .10

12 L, T, mC�SF, Sa .07 .09 .05 .09

13 L, T, mC�SF, Dhk .08 .09 .07 .10

14 L, T, mC�Sa, Dhk .04 .07 .05 .10

15 L, T, mC�SC, SF, Sa .05 .08 .06 .08

16 L, T, mC�SC, SF, Sa, Dhk .04 .09 .07 .09

Notes: Values that are at least equal to the basic model (sim. #1) error are emboldened; those that produced lower errors are additionally

underlined.

3 For instance, to evaluate simulation #9 (L, T, mP�SC and L, T, mP�SF), the error reference for the training set arousal

ratings was .05 � the minimum training error for arousal ratings between simulations #2 (L, T, mP�SC) and #3 (L, T, mP�
SF).
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information from the new sets of inputs, and
match and improve the performance of the model
using the input variables separately (see Table 4).
Simulations #9 and #10 had some apparent
advantages in relation to other simulations in
terms of arousal and valence. They conciliated the
lowest errors for training and test arousal, with the
lowest error for test valence. Simulation #14 was
particularly good for arousal (lowest training and
test errors across all simulations so far). The input
vector included the basic set of variables plus Sa
and Dhk, but the performance for valence ratings
was worse than in other simulations. These three
simulations had in common four input features:
two shared SC, two shared Sa, one contained SF,
and another Dhk. These variables were selected
for further analysis.

Finally, to choose the best model we tested the
subset of four variables together in the same
simulation. There was only one doubt and this
pertained to the Dhk input: in all simulations in
which it appeared the test valence errors were
worse than other simulations (see simulations
#11, #13, and #14). Consequently, we conducted
two simulations instead of one: L, T, mP�SC,
SF, Sa (sim. #15) and L, T, mP�SC, SF, Sa,
Dhk (sim. #16). Results are shown at the bottom
of Table 4 (again we have highlighted the best
error conditions, following the procedure ex-
plained above). Simulation #15 clearly produced
better results than simulation #16. In addition to
this, the input set used in simulation #15 led to
the lowest error predictions of valence ratings
when compared to all other simulations. As
expected, the predictions of arousal ratings were
not improved (note that earlier we observed that
none of the new features improved the predictions
of arousal), reinforcing the idea that the new
features did not contribute distinct information
leading to the inference of relevant rules about
arousal dynamics.

The final set of inputs selected for the music
model consisted of the input vector used in
simulation #15, which included: loudness (L),
tempo (T), melodic contour (mC), spectral flux
(SF), spectral centroid (SC), and sharpness (Sa).
They represent four main psychoacoustic groups:

dynamics (L), duration (T), pitch (mC and SF),
and timbre (SC and Sa).

The following section describes the simulations
focused on speech stimuli. Later the music model
is analysed in more detail and compared to that
for speech.

Speech preliminary simulations: Input vector
optimisation
The analysis for speech simulations was per-
formed identically to that for music. First, we
tested each variable independently in separate
simulations. Then we selected those features that
potentially improved the model performance and
tested all possible combinations of this subset of
features and again evaluated how much they
improved the model performance. This process
was repeated until the best set of input features
was found.

The results corresponding to the first battery of
simulations with speech stimuli are shown at the
top of Table 5 (simulations #1 to #8). All
simulations produced similar errors for the train-
ing set stimuli. In fact, little new information
seemed to be extracted from the added input
features. Through the observation of the perfor-
mances shown in Table 5, we chose the features
included in the input vectors of simulations
#2, #5, #7, and #8: SC, Sa, Ds, and R. We
dropped Szf, used in simulation #4 with good
results, because it quantifies the same quantity as
Sa (sim. #5) but using a different algorithm. On
top of that, Sa led to a better performance than
Szf for test valence. SF, used in simulation #3,
was also dropped because it worsened the result
for test valence and it did not improve the
performance for arousal (compared to sim. #1).

The next step was to set up another battery of
simulations to test all possible pair-wise combina-
tions of the newly selected variables (plus the basic
set of features; see Table 5, simulations #9 to
#14). Again we highlighted the lowest error
values using the same method described for the
music model input vector optimisation. Simula-
tions #9, #11 and #13 yielded the lowest test
valence error of all simulations, a more balanced
error between arousal and valence, and the lowest
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error values for the test set. The input vectors for
these three simulations included: SC (#9 and
#11), Sa (#9 and #13), and R (#11 and #13).
These variables were chosen for further testing.

The last stage was to test all the performance
enhancing variables together in the same input
vector of a single simulation. Results are again
shown in Table 5 (see simulation #15). This
simulation produced the lowest error for the test
arousal and valence. The input vector used in this
simulation was composed of variables describing
five psychoacoustic dimensions: loudness (L),
duration (SR), pitch (pC), timbre (SC and Sa),
and roughness (R).

The following section provides a detailed
analysis of the results obtained for the music and
speech models using the selected input vectors.
We also compare the results obtained for both
domains.

ANALYSIS

The following sections provide a detailed analysis
of each model for all stimuli. The analysis

provides a closer look at the model performance
and resemblance to subjects’ responses using the
input sets optimised in the previous section for the
music and speech models. We chose four mea-
sures to depict in more depth the model perfor-
mance and to allow subsequent comparison of
speech and music models: (1) similarity between
model outputs and observed values*Pearson
linear correlation coefficient (r); (2) explained
variance (r2); (3) precision of predictions*root
mean squared error (RMSE); and (4) standardised
precision of predictions*normalised RMSE
(NRMSE). This last measure was introduced to
interpret the magnitude of the RMSE in relation
to the range of observed values since its inter-
pretation depends on the variation of each piece.
Furthermore, it allowed us to compare directly
speech and music models, which was central to
our aim of identifying acoustic cues used in music
and speech.

Music model

The performance measures calculated for the
music model are shown in Table 6.

Table 5. Error statistics for the simulations: Speech

RMSE

Arousal Valence

Simulation Inputs Training Test Training Test

1 L, SR, pC .02 .05 .02 .10

2 L, SR, pC�SC .03 .06 .02 .08

3 L, SR, pC�SF .02 .05 .02 .11

4 L, SR, pC�Szf .02 .06 .02 .07

5 L, SR, pC�Sa .02 .07 .02 .06

6 L, SR, pC�Dhk .03 .06 .02 .13

7 L, SR, pC�Ds .02 .04 .02 .11

8 L, SR, pC�R .03 .05 .05 .08

9 L, SR, pC�SC, Sa .03 .06 .02 .07

10 L, SR, pC�SC, Ds .02 .04 .02 .11

11 L, SR, pC�SC, R .04 .05 .05 .08

12 L, SR, pC�Sa, Ds .02 .05 .02 .09

13 L, SR, pC�Sa, R .02 .06 .01 .06

14 L, SR, pC�Ds, R .02 .04 .02 .12

15 L, SR, pC�SC, Sa, R .03 .04 .02 .06

Notes: Values that are at least equal to the basic model (sim. #1) error are emboldened; those that produced lower errors are additionally

underlined.
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The model was able to explain a very large
proportion of the variance in arousal of the
training (97%) and test (75%) sets, which suggests
a strong resemblance between model predictions
and observed data. With regard to the similarity
between predicted and observed values, the re-
siduals were estimated to correspond to 21% of
the total range of values (averaged across all
pieces, after being calculated independently for
each piece). Both measures indicated a very good
performance for arousal, although the model more
accurately predicted the outputs for the training
set (15%) than for the test set (27%).

With regard to valence, the model was able to
explain 83% of the variance in the training set and
43% of the test set. These figures are lower than
those for the arousal output, which indicates less
similarity between model predictions and ob-
served values (although this mainly derives from
the small amount of explained variance in pieces 2
and 8). Nevertheless, the precision was similar to
that of arousal: the NRMSE was 21% for the
training set and 30% for the test one.

Concerning this discrepancy, it should be
noted that there are important limitations when
using r as a measure to quantify the similarities
between functional data sets (and consequently r2

to estimate the explained variance), particularly
when modelled with a non-linear framework.

With flat curves (i.e., small variance) the best
linear fit is a horizontal line passing through the
mean. Considering that the model can output
non-linear, translated into small random varia-
tions, then the linear correlation coefficient
becomes a non-robust performance measure. In-
deed, those deviations from linearity will increase
the total sum of squared distances from the re-
gression line even if they represent a very close
relationship between the two variables. This can be
made worse by the presence of just a few outliers.

In this context it is helpful to observe the
model outputs in relation to the subjects’ re-
sponses for all pieces, represented in Figure 2A,
which displays arousal and valence as orthogonal
dimensions in a two-dimensional Cartesian space.
To gain an even better insight into the continuous
ratings predicted by the model see Figure 3A,
which shows the arousal and valence time series
for two sample pieces from the test set.

The overlap of the human participant re-
sponses and the model outputs in Figure 2A
shows how closely the model resembles the
participants’ responses. Consistent with the sta-
tistics presented in Table 6, the individual charts
show that the model is able to capture the
‘‘affective journey’’ of the different pieces. The
accuracy is quite remarkable for several of them, as
can been seen by inspecting the results for pieces

Table 6. Precision (RMSE and NRMSE), similarity (r), and explained variance (r2) values for all music pieces used in the experiment

Arousal Valence

Piece r r2 (%) RMSE NRMSE (%) r r2 (%) RMSE NRMSE (%)

1 .93 86 .03 9 .91 82 .04 19

2 .73 54 .10 39 .24* 6 .09 32

3 .98 96 .05 13 .82 68 .06 25

4 .98 96 .07 24 .95 90 .05 17

5 .99 98 .05 12 .93 86 .08 26

6 .85 72 .09 45 .87 75 .07 28

7 .99 98 .04 10 .95 90 .04 15

8 .94 89 .07 17 .32* 10 .12 40

Train av. 97 .05 15 83 .06 21

Test av. 75 .07 27 43 .08 30

Total av. 86 .06 21 63 .07 25

Notes: The statistics shown pertain to the model used in Simulation #15, which includes loudness (L), tempo (T), melodic contour (mC),

spectral centroid (SC), spectral flux (SF) and sharpness (Sa) as inputs. The NRMSE corresponds to the RMSE normalised to the range

of observed values (participants responses to target values) for each emotion dimension. *pB.05; p�0 for all others.
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1, 3, 4 or 7. It is also evident the model fails to

accurately predict the emotional qualities of some

sections of a few pieces. For instance, the model

tended to predict higher valence than expected for

pieces 5 and 8, and failed to identify correctly the

arousal level for a portion of piece 6.

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1
Piece 1

A
ro

us
al

Participants
Model

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

Time(s)

V
al

en
ce

0 20 40 60 80 100
-1

-0.5

0

0.5

1
Piece 6

A
ro

us
al

Participants
Model

0 20 40 60 80 100
-1

-0.5

0

0.5

1

Time(s)

V
al

en
ce

0 10 20 30 40 50
-1

-0.5

0

0.5

1
Sample 4

A
ro

us
al

Participants
Model

0 10 20 30 40 50
-1

-0.5

0

0.5

1

Time(s)

V
al

en
ce

0 20 40 60 80 100
-1

-0.5

0

0.5

1
Sample 9

A
ro

us
al

Participants
Model

0 20 40 60 80 100
-1

-0.5

0

0.5

1

Time(s)

V
al

en
ce

(A)

(B)

Figure 3. Model predictions for music pieces 1 and 6 (A) and speech samples 4 and 9 (B). The arousal and valence time series predicted by

the model for the stimuli are shown together with the averaged 2DES rating from participants.
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These results indicate that the model can
extract relevant information from psychoacoustic
features to predict emotional characteristics of
music, and that the knowledge derived is likely to
represent meaningful relationships between psy-
choacoustic structure and emotions conveyed. In
that sense, the model performance is quite
remarkable. Nevertheless the model cannot ac-
count for aspects of the emotions perceived by
listeners, either due to intrinsic mathematical
limitations of the model or, very likely, because
the input vector does not contain enough infor-
mation to explain that variance.

Speech model

The model performance for each speech sample is
shown in Table 7. Figure 2B shows the 2DES
representation of the participants’ ratings as well
as the model outputs (similarly to the representa-
tion of the results for music).

The model was able to explain 89% and 81% of
the training and test arousal, respectively, which is
a large proportion of the observed variance. The
similarity between participants’ responses and
model predictions was also high. Indeed, the
NRMSE for arousal predictions was 10% (training
set) and 21% (test set). The explained variance in

arousal was higher than that of valence for both
training and test sets. The value of r2 averaged
across all samples for the arousal dimension is
86%, whereas for valence it was 67%. In terms of
similarity we have a different picture: both models
have very similar NRMSE (16% for arousal and
15% for valence).

These statistics indicate a good fit of the
speech model in predicting the human partici-
pants’ responses. Such observation can be verified
in Figure 2B, which superimposes in the 2DES
the continuous model predictions and (target)
participants’ continuous judgement of emotions
perceived in each speech sample.

The most obvious exceptions are sample 5, in
which arousal was underrated, and sample 2,
where both arousal and valence were overrated.
In order to observe the unfolding in time of the
reported emotions in more detail, the second-by-
second model predictions and participants’ re-
sponses for two of the test set samples were
plotted in Figure 3B.

Comparison between music and speech
models

In the previous sections, we have shown that it is
possible to model continuous ratings of emotions

Table 7. Precision (RMSE and NRMSE), similarity (r), and explained variance (r2) values for all speech samples used in the experiment

Arousal Valence

Sample r r2 (%) RMSE NRMSE (%) r r2 (%) RMSE NRMSE (%)

1 .98 97 .02 6 .98 96 .01 2

2 .92 85 .04 21 .89 80 .08 19

3 .99 97 .05 12 .99 99 .03 4

4 .94 88 .04 13 .97 94 .04 7

5 .83 68 .06 42 .86 74 .07 18

6 .98 95 .01 5 .25* 6 .01 21

7 .99 98 .01 6 .87 75 .01 7

8 .77 59 .01 20 .87 76 .02 7

9 .91 82 .03 19 .22* 5 .05 45

Train av. 89 .02 10 70 .02 8

Test av. 81 .04 24 63 .06 22

Total av. 86 .03 16 67 .04 15

Notes: The statistics shown pertain to the model used in Simulation #15, which includes loudness (L), speech rate (SR), prosodic contour

(pC), spectral centroid (SC), sharpness (Sa) and roughness (R) as inputs. The NRMSE corresponds to the RMSE normalised to the

range of observed values (participants responses to target values) for each emotion dimension. *pB.05; p�0 for all others.
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perceived in music and speech stimuli using low-
level psychoacoustic features and explain with a
good level of precision a large proportion of the
observed variance. Furthermore, both models
performed very satisfactorily when predicting the
emotion ratings for the unknown stimuli, which
indicates the presence of underlying rules linking
low-level psychoacoustic features and the com-
munication of emotions in music and speech.

At this point, it seems natural to consider the
similarities between the models. In the context of
this research, we proposed two methods to
compare music and speech models. The first was
to compare the composition of the input vectors,
which reveals the relevant perceptual features used
by the model to predict the subjective feelings
of emotion. The second was to compare the
performance figures, which can indicate how
accurately these responses can be modelled for
each domain. The following paragraphs detail
both comparisons.

Input vector
Regarding the composition of the input vector,
both models’ input vectors shared five features:
L (loudness), T/SR (tempo/speech rate), mC/pC
(melodic/prosodic contour), SC (spectral cen-
troid), and Sa (sharpness). These features repre-
sent four psychoacoustic groups: loudness/
intensity, duration/rate, pitch/frequency (mC
and pC), and timbre/frequency. In addition to
this, each model had one other distinct input
feature: the music input vector includes SF
(spectral flux) and the speech input includes
R (roughness).

The most obvious implication of these results
is that emotional cues are encoded as psychoa-
coustic spatiotemporal patterns in both media.
Moreover, the subset of psychoacoustic cues that
carry emotional ‘‘meaning’’ is very similar for both
media. Such a result is consistent with the
hypothesis that both music and speech prosody
communicate emotion through structured mod-
ulations in the intensity, duration, and frequency
components of sound. Perceptually, we suggest
that those affective cues are perceived in both

domains by means of spatiotemporal patterns in
psychoacoustic percepts.

The extra input found for each model
(R: speech; SF: music) can be interpreted as
reflecting the relevance of roughness for convey-
ing emotion in speech (and not in music), and the
relevance of spectral flux for conveying emotion in
music (but not in speech). However, there is at
least one determinant to consider before accepting
this interpretation of the results: the limitations of
our experiment regarding the small sample of
stimuli used. Indeed, the fact that the model
learns how to compute the outputs from the
inputs that describe the stimuli in the training set,
binds the model’s computational space to the
information extracted from it. If, for instance,
roughness is sufficiently similar across all training
pieces, then the model may not be able to construe
the output stream (and predict the emotions
conveyed) by picking up information from that
variable. This does not mean that the variable is
irrelevant in general, but rather that it can be left
out in the musical ‘‘universe’’ considered. The
same can happen, for instance, when two variables
(e.g., loudness and sharpness) are highly corre-
lated (see also Schubert, 1999a).

In this context, one has to assume that the
variables excluded during the input are not
necessarily unimportant for emotional expression,
but rather that the affective information they
convey is redundant, insufficient or not represen-
tative of the actual relationships between the
variable and the affective features. This could
justify the fact that roughness, which is an
important component in emotional responses to
music from early on in life (Trainor & Heinmiller,
1998), does not form part of the music model.

In relation to the spectral flux input in the
music model, it is likely that the possible changes
in consecutive spectra of the voice are much more
limited than those in music. Indeed, music has a
greater range and goes through more pronounced
frame-to-frame changes than speech (in point of
fact spectral flux has been used as a feature to
discriminate music and speech; see Scheirer &
Slaney, 1997). It therefore seems reasonable that

EMOTION IN SPEECH PROSODY AND MUSIC

COGNITION AND EMOTION, 2013, 27 (4) 677



spectral flux is less informative in the case of
speech signals.

Performance
In terms of explained variance in arousal and
valence ratings, the music model outperformed
the speech one for the training set stimuli (97% vs.
89% for arousal, and 83% vs. 70% for valence).
The opposite happened with the test stimuli, such
that more variance in the emotion perceived in
speech stimuli was explained than in the music
stimuli (75% vs. 81% for arousal, and 43% vs. 63%
for valence). These figures suggest that the some
of the variance in the training stimuli explained by
the music model is the result of over-fitting (that
is, it uses rules extracted from the training set that
apply to it but that are not necessarily generali-
sable to other stimuli). Conversely, the larger
amount of variance of the test set stimuli
explained by the speech model, indicates better
generalisation of the speech model (over the music
model) to novel stimuli. In summary, the most
salient difference between the two models’ per-
formance (in terms of explained variance) is the
fact that the speech model is better able to
generalise the valence ratings to novel stimuli.

The NRMSE (introduced earlier) allowed us to
estimate the magnitude of the prediction errors
normalised to the range of the observed values.
Here, we revert to the NRMSE figures presented
earlier in Table 6 (music) and Table 7 (speech) to
compare both models. Analysis of the average
NRMSE for the training set and test set indicated
that the speech model predicts arousal more
precisely than the music model (15% vs. 10% for
the training set and 27% vs. 24% for the test set),
and even more so for valence (21% vs. 8% for the
training set and 30% vs. 22% for the test set). This
means that the standard deviation of the error
residuals normalised to the range of observed
values was smaller for speech, which indicates a
better fit.

Taking both measures together, we conclude
that both models achieved similar performances,
although there was a tendency for the speech
model to predict more accurately a larger amount
of the variance in valence conveyed from novel

stimuli. This suggests that valence is more con-
sistently predictable in speech signals.

DISCUSSION AND CONCLUSIONS

This investigation of emotional communication in
music and speech combined a behavioural and
computational study to identify a set of psychoa-
coustic cues associated with judgements of arousal
and valence in the auditory domain. This research
produced a model of psychoacoustic cues to
emotion communication comprising a set of core
features common to both music and speech, plus
one extra feature unique to each. The five
psychoacoustic features implicated in judgements
of emotion in music and speech were loudness,
tempo and speech rate, melodic and prosodic
contour, spectral centroid, and sharpness. The
features distinct to each domain were spectral flux,
in the case of music, and roughness, in the case of
speech.

These results indicate that emotional cues are
encoded as psychoacoustic spatiotemporal pat-
terns in both media. Furthermore, the psychoa-
coustic cues relevant to judgements of emotion
perceived are very similar for both mediums,
which is consistent with the hypothesis and
previous findings that communication of emotion
in the auditory domain arises from structured
modulations in the intensity, duration, and fre-
quency components of sound. Whereas previously
pitch height, rate and intensity have been identi-
fied as likely candidates (Ilie & Thompson, 2006,
2011), and a vast array of other attributes
implicated in the communication of discrete
emotions in music and speech (Juslin & Laukka,
2003), our study provides a parsimonious yet
powerful model that pinpoints a feature set of
five shared plus one additional unique acoustic
attribute in each domain. A further strength of
our findings is that they arise from ecological
rather than artificial stimulus materials, and are
based upon continuous ratings of emotion, thus
capturing the dynamic character of emotional
experience with music and speech. Our study
provides supporting evidence for the idea that
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emotional content of music and speech is de-
coded, at least partially, by a shared processor that
responds to psychoacoustic features regardless of
the type of sound source (Ilie & Thompson, 2006,
2011; Juslin & Laukka, 2003), and specifies more
precisely the particular acoustic features involved.

These insights are particularly noteworthy
given that this is the first time, to our knowledge,
that emotional communication by psychoacoustic
cues in both speech and music have been modelled
using the same mathematical framework and
continuous measurements. This approach per-
mitted a direct comparison of both media, as
well as the investigation and modelling of mild
and nuanced emotions (the most common states
communicated in everyday life) as well as full-
blown emotional states.

In this paper we do not elaborate on the
relationships between specific acoustic cues (or
groups of cues) and emotion qualities. This is
because analytical tools that would allow us to
infer the rules embedded in the model currently
do not exist; this kind of modelling requires a
priori knowledge about the inputs and/or output,
which was not available in our case. It is possible
to describe the model as a set of equations, but
that would not be very helpful in terms of
informing us about the links between music,
speech prosody, and emotion. In fact, to find
these straightforward links (typically reported as
the relationship between extreme levels of a
specific cue and some sort of emotion label) would
be counterproductive since the very premise of our
research is that these relationships are non-linear
(related to the existence of redundant information
among features and the temporal dimension). We
are currently developing analytical methods that
permit analysis of the network and the extraction
of relevant information, but this is a separate
project and beyond the scope of this paper. These
techniques include reducing the dimensionality of
the network’s hidden layer activations (using
dimensionality reduction techniques such as prin-
cipal compoment analysis [PCA] or independent
component analysis [ICA]) and evaluating the
canonical correlations between this reduced set of
variables, the inputs, and the outputs. This

approach highlights linear relationships between
specific psychoacoustic cues, and arousal and
valence but ignores the temporal component. To
consider the temporal dimension, we are testing
the use of moving correlations between inputs,
hidden activations, and outputs, to detect specific
moments of causal linkage between psychoacous-
tic cues and emotion dimensions. The develop-
ment of these analytical tools is therefore dealt
with elsewhere.

Despite these limitations in terms of model
interpretability, it should be remembered that the
model itself is the representation of the relevant
emotional features obtained from acoustic features
and used to predict emotional responses. With
this in mind our results have several important
implications beyond identifying specific psychoa-
coustic cues to emotion communication in music
and speech.

The difference between the psychoacoustic
cues implicated in the model for music and for
speech is instructive because it suggests that
judgements of emotion in music and speech will
call on different psychoacoustic dimensions ac-
cording to their relevance in the individual
context. Brunswik’s (1956) lens model, as mod-
ified by Scherer (1982) for non-verbal commu-
nication, and Juslin (1997) for music performance,
provides a helpful framework within which to
understand this phenomenon. According to this
perspective, when one cue is unavailable in a
performance another cue can be used to convey a
similar affect, and so listeners also adopt a flexible
approach to their decoding. Ilie and Thompson
(2006) argued that differences in the influence of
affective cues in music and speech may be because
the listener is using different attentional strate-
gies, allocating more or less attention to particular
cues depending on which source they are listening
to, and that, because of this, stimulus properties
are not good predictors of specific emotions.
However, one of the significant advantages of
our model is that it seems able to model these
different attentional strategies. Furthermore, the
good performance of our models suggests that a
more stimulus-driven (or ecologically mutualistic)
approach can be a successful predictor of perceived
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emotion. This same principle underlies the perti-
nence of different psychoacoustic cues in different
genres of music because different repertoires are
associated with different acoustic characteristics:
for example, it is difficult to vary loudness on a
harpsichord and therefore loudness is unlikely to
operate as a cue to emotion in music performed on
a harpsichord. Evidence supporting this observa-
tion comes from preliminary tests with multiple
genres, which suggest that the model performs
less well and with poorer generalisation when
applied to multiple genres: when dance, rock, pop
and death metal were used as a training set and
instrumental and vocal classical, and film music
were used as the test set a significant proportion of
listeners responses was predicted from the psy-
choacoustic features but with lower performance
than in this case where a single genre is used for
both training and test sets (Coutinho, 2010).

As this suggests, psychoacoustic features are
not orthogonal dimensions and hence they share
information about the stimulus that can be seen as
redundant. One way of understanding this overlap
of available information is to see it as providing a
safeguard, which keeps crucial auditory informa-
tion alive even in the event of an impairment to a
particular cognitive function. From an evolution-
ary perspective this makes sense because it means
that the organism is able to utilise what would
otherwise be redundant in the acoustic cues to
emotion to avoid individual and social disadvan-
tage (e.g., the ability to perceive emotional mean-
ing in sound despite impairment of timbre
perception).

This distinction between shared and domain-
specific attributes of music and speech is high-
lighted by Ilie and Thompson (2011, pp. 260�261)
in their overview of emotional communication in
the auditory domain. They speculated that cues
which are shared across auditory domains are
likely to resist enculturation in comparison to
domain-specific cues, and that enculturation of
these domain-specific cues may lead to fractiona-
tion of emotional communication systems, thus
accounting for cross-cultural differences in emo-
tional coding. For example, they argue that the
association of higher pitch with motherese during

child development may lead to high pitch in
speech being associated with greater pleasantness
than high pitch in music. Thus, while we argue
that our results provide evidence of the impor-
tance of acoustic cues to emotional responses to
music we recognise that cues are also subject to
historical, social and technological contingencies.

Our results support Ilie and Thompson’s
(2006) observation that music stimuli tend to
elicit stronger affective responses than speech
stimuli. The maximum arousal and valence scores
(averaged across all participants) across all music
stimuli was almost double that of the speech
samples (music: .53/.31, compared to speech:
.28/.14), whereas the minimums were almost
identical. This difference in the strength of emo-
tional response may reflect differences in the emo-
tional ‘‘work’’ performed by these two different
domains in everyday life: as Ilie and Thompson
(2006) remarked, people more commonly listen to
music for reasons of mood regulation and pleasure
than they do to speech alone. In addition to this,
we suggest that the larger range of sounds
qualities as well as their organisation and produc-
tion in instrumental and electroacoustic music,
permits communication of more intense states.

A possible criticism of the approach adopted
here is that listeners may report changes in
musical energy and characteristics rather than
perceived emotions. In other words, participants
may be subject to demand characteristics within
the experimental context, which encouraged them
to model ‘‘emotional response to music’’ using the
only information available to them*psychophysical
cues. In counterargument to this claim are two
types of evidence. First, other studies have
adopted this behavioural approach and provide
physiological data consistent with the induction of
perceived (Coutinho & Cangelosi, 2009) and felt
(Coutinho & Cangelosi, 2011) emotion in listen-
ers. Second, listener responses are internally
consistent and show a high degree of agreement
with each other, which indicates that acoustic cues
act as indices of emotion even if this is seen as a
measure of how music communicates emotion
rather than emotion which is felt.
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A further question concerns the status of the
averaged participant responses on which the
model is based. The model predicts listener
arousal and valence based on an average of listener
responses; in other words we are collecting shared
emotional evaluations. Application of Cronbach’s
alpha indicates that this shared evaluation has
good internal consistency. Investigation of indi-
vidual differences lies beyond the scope of this
paper and is the subject of ongoing research.

In addition, the number of stimuli may seem
relatively small when compared to the possible
combinations across the 2DES space. In fact, the
17 stimuli represent around 15 minutes of music
and 15 minutes of speech, which, having used a
1 Hz sample rate, equates to 900 input stimuli to
the model. Nonetheless, it was not possible to
have an exact match of the number of times each
quadrant occurred in the final set. This raises the
possibility that there may be over- or under-fitting
of some areas of the emotion space limiting the
generalisability of the model and highlights the
need for a set of stimuli that is able to represent
the acoustic diversity of a wide range of music
styles and emotional states. Such diversity can
only be achieved through multiple experiments
(due to experimental restrictions) and the strength
of this study is that by using continuous data we
have provided a more complete picture than has
hitherto been possible.

Lastly, criticisms of the early stop back propa-
gation algorithm used here are that it is very much
dependant on the training and test sets chosen,
which in turn may lead to an overestimation of the
model performance. Indeed, due to the fact that
the optimal model is chosen based on the analysis
of the error of the test set, it may lead to an
optimisation of the model performance to that
particular set. As a result the model may over-
estimate the extent to which it generalises to other
data sets, that is, the amount of variance explained
by the model may be smaller than what our results
show. One approach to avoid this in future
research would be to evaluate the generalisation
using a third ‘‘validation’’ set, not used as a criteria
to select the best model, but that can be used on it
to obtain an unbiased estimate for the predicted

error. It should be noticed, nevertheless, that
comparable performances were obtained in pre-
vious modelling work using two different data sets
(Coutinho & Cangelosi, 2009, 2011).

These conclusions highlight specific topics for
future research. First, it is desirable to produce a
model that reflects a fuller range of musical
stimuli (including various genres and cultures)
and therefore of psychophysical cues to emotion,
in order to explore how much of the variance in
responses can be explained by psychoacoustic cues.
Second, the generalisability of the model needs to
be determined through cross-cultural studies with
listeners from different languages and musical
cultures. Third, it should also be possible to
determine which psychophysical cues are impor-
tant within particular musical styles. In addition
to the study of film music reported here, the
model has been applied successfully to Western
classical music (Coutinho & Cangelosi, 2011),
romantic music (Coutinho & Cangelosi, 2009),
and popular music (Coutinho, 2010). Replication
of the study across further repertoires will provide
insight into the variability of acoustic cues to
emotion across genres.

This project has a number of implications and
applications. This research provides a new method
for the analysis of emotional communicated by
speech and music stimuli, and reveals the ex-
istence of acoustic and perceptual schema under-
lying the perception of emotion in both domains.
We identify particular acoustic characteristics that
appear to be responsible for the perception of
emotion in music and speech prosody, furthering
knowledge of emotion communication in the
auditory domain. This study, for the first time,
captures the dynamic aspect of emotional experi-
ence with auditory phenomena, by using contin-
uous measurement. A final innovation is the
identification of group differences in continuous
report of emotion perception across auditory
domains, namely gender and emotional intelli-
gence, emotional stability, and musical training.
We show that these factors play a role in
continuous evaluations of emotion perception
with the potential to be integrated into future
models. It is worth noting that it is not only the
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global model performance which is important, but

also the errors at each moment in the stimuli.

It is plausible to assume that higher error in

specific sections/portions of music or speech

stimuli are at least partially due to the lack of

information from the current model inputs and/or

inherent limitations of the limited set of stimuli

used. In the case of the first, it could indicate that

other low-level features or, very likely, ‘‘higher

level’’ features (either stimulus related or indivi-

dual) would be necessary to describe the emotions

perceived by subjects.
The work also has applications to practice. For

example, the model provides a means to analyse

the potential effects of particular pieces and aid

the systematic selection of music for applications

in settings such as health and well-being. The

model has potential to be used as an instrument

for the diagnosis of different psychiatric condi-

tions that can be inferred from speech, such as

depression and schizophrenia (e.g., Tolkmitt,

Helfrich, Standke, & Scherer, 1982). The model

could also be used to improve hearing-aid systems

in their response to relevant acoustic features in

emotional communication, by adjusting their

electronic and electro-acoustic parameters to

optimise speech parameters. Areas involved in

human�computer interactions may also benefit,

since our model could be integrated into emotion

recognition systems and used in the synthesis of

emotional speech.
Beyond the specific applications suggested

above, this work provides new evidence that

speech and music are processed by general-

purpose brain mechanisms that are responsive to

acoustic features regardless of their modality (e.g.,

Patel, 2010). In the longer term such evidence can

contribute to an understanding of the evolutionary

origins of language and music, as part of a

converging picture of commonalities between

speech and music.
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